

CTS - SAT 2022

CTS ACADEMY SCHOLARSHIP - CUM - ADMISSION TEST

MOCK TEST PAPER (Chemistry)

Time: 60 Minutes

Class: 11th Moving to 12th

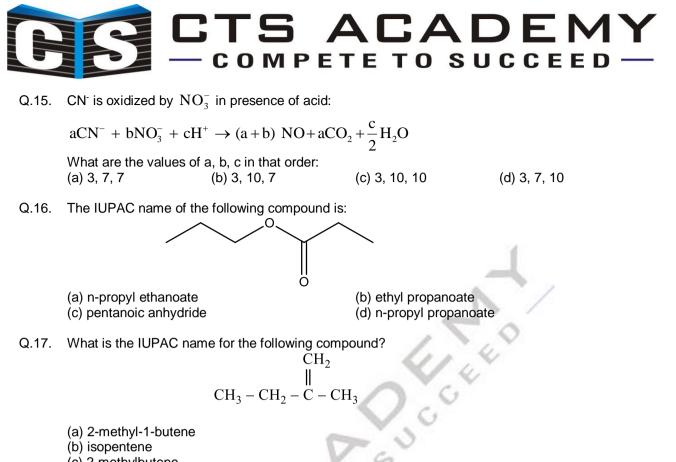
Max. Marks: 160

INSTRUCTIONS

> PLEASE READ THE INSTRUCTIONS CAREFULLY

A. General:

- 1. This Booklet is your Question Paper. Answers have to be marked on a separate sheet. Write your NAME, ROLL NO. and CONTACT NUMBER clearly on the Answer Sheet.
- Darken the appropriate bubbles with Blue/Black Ball Point only. Use of Pencil is strictly prohibited.
- 3. No additional sheets will be provided for rough work.
- 4. Blank paper, Clipboards, Calculators, Cellular Phones and Electronic Gadgets in any form are not allowed.
- 5. Do not tamper/spoil the test sheet.

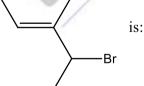

B. Question Paper Format & Marking Scheme:

- 1. The Question Paper consists of total <u>40 questions</u>.
- 2. Each question carries <u>4 marks.</u>
- 3. There will be <u>negative marking</u> of one mark.

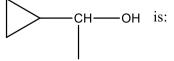
COMPETE TO SUCCEED

Best of Luck !!!

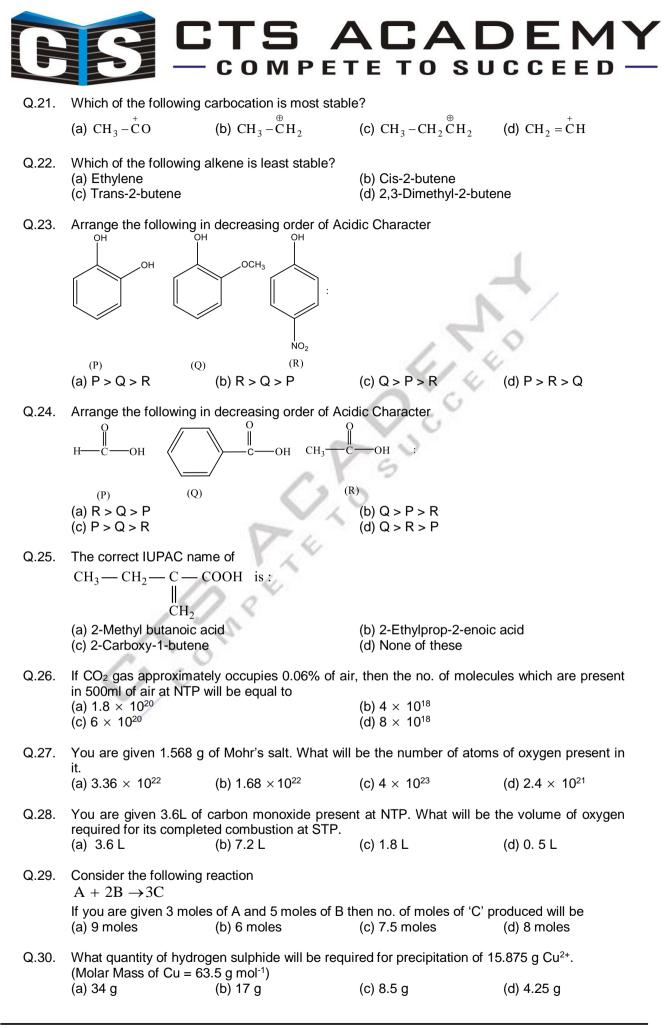
G						
Q.1.	Which of the following belonging to transition s (a) $1s^2$, $2s^22p^6$, $3s^23p^6$, (b) $1s^2$, $2s^22p^6$, $3s^23p^63$ (c) $1s^2$, $2s^22p^6$, $3s^23p^63$ (d) $1s^22s^22p^6$, $3s^23p^63d$	series? 4s ² d ² , 4s ² d ¹⁰ , 4s ² 4p ²	d state electronic confi	iguration of element		
Q.2.	Which of the following is (a) N < Be < B (c) Na < Li < K	s the correct order of rad	ii? (b) F ⁻ < O ²⁻ < N ³⁻ (d) Fe ³⁺ < Fe ²⁺ < Fe ⁴⁺			
Q.3.	Which of the following r (a) K > Na > Li (c) B > C > N	epresents the correct orc	der of first ionization ener (b) Be > Mg > Ca (d) Ge > Si > C	gy is:		
Q.4.	Calculate the number o	f lone pair of electron pre	esent on Se in SeO_3^{2-} ?	0		
	(a) 0	(b) 1	(c) 2	(d) 3		
Q.5.	Which one of the follow (a) Cl ₂	ing molecules are formed (b) HCI	d by p-p overlapping? (c) H ₂ O	(d) NH ₃		
Q.6.	The hybridization of terr (a) sp	ninal carbon in C ₃ O ₂ , is: (b) sp ²	(c) sp ³	(d) dsp ³		
Q.7.	Which reaction forms a (a) $N_2 + 3H_2 \rightarrow$	product with a trigonal pl (b) 2CO + $O_2 \rightarrow$	lanar geometry? (c) $PCl_3 + Cl_2 \rightarrow$	(d) $2SO_2 + O_2 \rightarrow$		
Q.8.	A triple bond is found in (P) CO	which of the following sp $(Q) C_2H_2$	pecies? (R) CN⁻			
	(a) P only	(b) Q only	(c) P and Q only	(d) P, Q and R		
Q.9.	Which of the following h (a) HF	ydride is/are "electron-p (b) H₂O	recise" type? (c) SiH₄	(d) PH ₃		
Q.10.	Permanent hardness in water cannot be treated by:(a) treatment with washing soda(b) calgon's method(c) boiling(d) ion exchange method					
Q.11.	In aqueous solution, the (a) Na ⁺ (aq)	e largest ion is: (b) Cs⁺(aq)	(c) Rb⁺(aq)	(d) Li⁺(aq)		
Q.12.	Find the value of oxidat (a) 1	ion state of Co in Ag[Co((b) -1	CO)4]: (c) Zero	(d) None of these		
Q.13.	Which statement is wrong? (a) Oxidation number of oxygen is -1 in peroxides (b) Oxidation number of oxygen is +2 in oxygen difluoride					
	(c) Oxidation number of oxygen is $+\frac{1}{2}$ in superoxides					
	(d) Oxidation number of oxygen is (-2) in most of its compounds					
Q.14.	Consider the salt $K_xH_y(0)$ The relationship between (a) $x + y - z = 0$ (b) $x + y = 2z$ (c) $x + y + z = 0$ (d) none of these					



- (a) 2-methyl-1-butene (b) isopentene
- (c) 2-methylbutene
- (d) 2-ethylpropene
- Q.18. What is the IUPAC name for the following alkyne? Br and the second second


$$CH_3 - C \equiv C - CH_2 - \begin{matrix} l \\ CH_2 - CH_3 \end{matrix}$$

- (a) 5-bromo-2-heptyne (c) 2-bromo-2-methyl-4-hexyne
- (b) 3-bromo-5-heptyne (d) 5-bromo-5-methyl-2-hexyne


The IUPAC name of Q.19.

- (a) 2-bromo-3-methylbut-3-ene (b) 4-bromo-3-methylpent-2-ene
- (c) 2-bromo-3-methylpent-3-ene
- (d) 4-bromo-2,3-dimethylbut-2-ene
- The IUPAC name of Q.20.

- CH_3 (a) 1-hydroxy-1-cyclopropylethane (c) 2-cyclopropylethanol
- (b) 1-hydroxyethylcyclopropane (d) 1-cyclopropylethanol

F						
Q.31.	Calculate molecular we compound. (a) 20	eight of a compound if 100 ml of a 2 M solution contains 11.7 g that				
		(b) 58.5	(c) 23.4 g	(d) 46.8 g		
Q.32.	What volume of H ₂ gas H ₂ SO ₄ is required. (a) 11.2 L	s is liberated at STP if for dissolving 16.8 g of a metal exactly 14.7 g				
		(b) 5.6 L	(c) 4.48 L	(d) 3.36 L		
Q.33.	Bohr's model was based on hydrogen atom. If the ionisation potential of the ground state of hydrogen atom is 2.17×10^{-11} erg per atom then calculate the wavelength (in angstrom) of the photon that is emitted when an electron in Bohr orbit $n = 2$ returns to the orbit $n = 1$ in the hydrogen atom.					
	(a) 1220	(b) 610	(c) 2440	(d) 305		
Q.34.	According to Heisenberg uncertainty principle it is not possible to exactly calculate the exact position and exact momentum simultaneously. If a particle of mass 1.1×10^{-27} kg has uncertainty in its position 3×10^{-10} cm, then calculate the minimum uncertainty in velocity (a) 1.6×10^3 m/s (b) 1.6×10^4 m/s (c) 1.6×10^5 m/s (d) 1.6×10^6 m/s					
Q.35.	Find the total mass of hydrogen atom) (a) 4 mg	neutrons in 7 mg of ¹⁴ C (b) 4 μg	(Assume the mass of (c) 4 g	a neutron = mass of a (d) 4 kg		
Q.36.	Assume that 10^{-17} J of light energy is needed by the interior of the human eye to see an object. How many photons of green light ($\lambda = 495 \text{ nm}$) are needed to generate this minimum energy? (a) 2.5 (b) 25 (c) 1.5 (d) 15					
0.07						
Q.37.	If the shortest λ of hydrogen atom in Lyman series is x, the longest λ in Balmer series of He ⁺ is					
	(a) $\frac{x}{4}$	(b) $\frac{9x}{5}$	(c) $\frac{6x}{5}$	(d) $\frac{36x}{5}$		
Q.38.	For which of the follow (a) H	ing species, Bohr's theor (b) H⁺	y does not apply? (c) He⁺	(d) Li ²⁺		
Q.39.	The energy of the second Bohr orbit in the hydrogen atom is -3.41 eV. The energy of the second Bohr orbit of He ⁺ ion would be (a) -0.85 eV (b) -13.64 eV (c) -1.70 eV (d) -6.82					
Q.40.	The orbital angular momentum of an electron in 2s orbital is					
	(a) $+\frac{1}{2}\cdot\frac{h}{2\pi}$	(b) zero	(c) $\frac{h}{2\pi}$	(d) $\sqrt{2} \frac{h}{2\pi}$		